遥遥领先H.ELE加高晶体的日常术语
遥遥领先H.ELE加高晶体的日常术语
Crystal oscillators and crystal resonators are essential components used in electronic devices to generate precise and stable frequencies. As an engineer working with these components, it's important to understand some key terms that will help you select the right crystal for your application. Here are six everyday terms you need to know:
1. Fundamental Mode
The fundamental mode refers to the primary frequency at which a crystal is designed to vibrate. Most crystals operate in the fundamental mode, meaning they vibrate at their intended frequency. However, crystals can also be designed to vibrate at higher frequencies, known as overtones. These overtones occur near multiples of the fundamental resonant frequency, such as the 3rd or 5th overtone. When selecting a crystal, it's crucial to determine whether it operates in the fundamental mode or an overtone mode.
2. Operating Temperature Range
The operating temperature range specifies the temperatures within which a crystal can function reliably. Different applications may require crystals that can withstand specific temperature ranges. For example, automotive-grade crystals may have an operating temperature range of -40°C to 125°C. It's important to pay attention to the operating temperature range of a crystal to ensure it meets the requirements of your application.
3. Frequency Stability
Frequency stability refers to the ability of a crystal oscillator or resonator to maintain a consistent frequency output over time. It is expressed in parts per million (ppm) and typically measured at room temperature (25°C). The lower the ppm value, the more stable the frequency output. Crystals with higher stability are often used in applications where precision is crucial, such as GPS devices.
4. Frequency Tolerance
Frequency tolerance represents the acceptable deviation from the stated frequency across the entire operating temperature range of the crystal. It is added to the frequency stability value measured at room temperature. For example, a crystal with a frequency stability of 50 ppm and a frequency tolerance of 50 ppm means that the actual frequency may vary by up to 100 ppm across the entire temperature range.
5. Load Capacitance
Load capacitance refers to the capacitance value within the crystal oscillator or resonator. It is expressed in picofarads (pF) and determines the external capacitance required for the crystal to function optimally. The load capacitance can be a standard value specified on the datasheet or customized based on the specific requirements of the circuit design. Optimizing the load capacitance helps ensure the crystal's stable operation across temperature extremes.
6. Case Size
The case size indicates the physical dimensions of the crystal package. It is typically expressed as length x width x height (e.g., 5.0mm x 3.2mm x 0.8mm). Additionally, the case size may specify the number of pads (2 or 4) and the package type, such as ceramic, plastic, glass weld, or epoxy weld. Engineers often refer to case sizes using industry-standard codes like 2016 or 3225.
By familiarizing yourself with these everyday terms, you'll gain a better understanding of crystal oscillators and crystal resonators. Remember to consider fundamental mode, operating temperature range, frequency stability, frequency tolerance, load capacitance, and case size when selecting the right crystal for your electronic designs.
H.ELE加高晶体的日常术语
晶体振荡器和石英晶体谐振器是电子设备中用来产生精确和稳定频率的基本元件。作为一名使用这些元件的工程师,了解一些关键术语非常重要,这将有助于您根据应用选择合适的晶体。以下是你需要知道的六个日常用语:
1,基本形式基模是指晶体设计振动的主要频率。大多数晶体以基本模式运行,这意味着它们以预定的频率振动。然而,晶体也可以被设计成以更高的频率振动,即泛音。这些泛音出现在基本谐振频率的倍数附近,例如第三或第五泛音。选择晶振时,确定它是工作在基音模式还是泛音模式至关重要。
2,工作温度范围
工作温度范围规定了石英晶振能够可靠工作的温度。不同的应用可能需要能够承受特定温度范围的晶体。例如,汽车级晶体的工作温度范围可能为-40°C至125°C,务必注意晶体的工作温度范围,以确保其满足应用要求。
3,频率稳定度
频率稳定性是指晶体振荡器或谐振器在一段时间内保持一致频率输出的能力。它以百万分率(ppm)表示,通常在室温(25°C)下测量。ppm值越低,频率输出越稳定。稳定性更高的晶体通常用于精度至关重要的应用中,如GPS设备。
4,频率公差
频率容差表示在晶体的整个工作温度范围内,与规定频率的可接受偏差。它与室温下测得的频率稳定度值相加。例如,频率稳定性为50 ppm、频率容差为50 ppm的晶体意味着实际频率在整个温度范围内的变化幅度最高可达100 ppm。
5,负载电容
负载电容是指石英晶体振荡器或谐振器内的电容值。它用皮法(pF)表示,决定晶体最佳工作所需的外部电容。负载电容可以是数据手册中规定的标准值,也可以根据电路设计的具体要求定制。优化负载电容有助于确保晶体在极端温度下稳定工作。
6,外壳尺寸
外壳尺寸表示水晶包装的物理尺寸。它通常表示为长×宽×高(例如,5.0毫米×3.2毫米×0.8毫米)贴片石英晶振。此外,外壳尺寸可指定焊盘数量(2或4)和封装类型,如陶瓷、塑料、玻璃焊接或环氧焊接。工程师通常使用行业标准代码(如2016或3225)来表示机箱尺寸。
通过熟悉这些日常术语,你会对晶体振荡器和晶体谐振器有更好的理解。为电子设计选择合适的晶体时,请记住考虑基模、工作温度范围、频率稳定性、频率容差、负载电容和外壳尺寸。
编码 | 型号 | 石英晶振厂家 | 描述 |
X3S027000BA1H-U | HSX321S | H.ELE加高 | HSX321S/27MHZ/10PF/10PPM/10PPM@- |
X3S024000B91H-HS | HSX321S | H.ELE加高 | HSX321S/24MHZ/9PF/10PPM/15PPM@-4 |
X3S027120BA1H-X | HSX321S | H.ELE加高 | HSX321S/27.12MHZ/10PF/10PPM/20PP |
X3S032000BC1HA-CHPZ | HSX321S | H.ELE加高 | HSX321S/32MHZ/12PF/10PPM/10PPM@- |
X3S016000DI1H-HW | HSX321S | H.ELE加高 | HSX321S/16MHZ/18PF/20PPM/20PPM@- |
X3S012000FI1H-HV | HSX321S | H.ELE加高 | HSX321S/12MHZ/18PF/30PPM/30PPM@- |
X3S025000D81H-HU | HSX321S | H.ELE加高 | HSX321S/25MHZ/8PF/20PPM/20PPM@-4 |
X3S026000B91H-NZ | HSX321S | H.ELE加高 | HSX321S/26MHZ/9PF/10PPM/10PPM@-3 |
X2B026000M81H-HS | HSX221SA | H.ELE加高 | HSX221SA/26MHZ/8PF/7PPM/15PPM/-4 |
X2B016000BA1H-U | HSX221SA | H.ELE加高 | HSX221SA/16MHZ/10PF/10PPM/10PPM/ |
X2B012000BC1H-U | HSX221SA | H.ELE加高 | HSX221SA/12MHZ/12PF/10PPM/20PPM/ |
X2B040000BC1H-DHZ | HSX221SA | H.ELE加高 | HSX221SA/40MHZ/12PF/10PPM/10PPM/ |
X2C025000DZ1H-U | HSX211S | H.ELE加高 | HSX211S/25MHZ/6PF/20PPM/20PPM@-3 |
X2C032000BA1H-HZ | HSX211S | H.ELE加高 | HSX211S/32MHZ/10PF/10PPM/15PPM@- |
X2C024000DZ1H-HU | HSX211S | H.ELE加高 | HSX211S/24MHZ/6PF/20PPM/20PPM@-3 |
X2C016000B81H-R | HSX211S | H.ELE加高 | HSX211S/16MHZ/8PF/10PPM/10PPM@-2 |
X2C026000BC1H-Z | HSX211S | H.ELE加高 | HSX211S/26MHZ/12PF/10PPM/10PPM@- |
X1C032000B81H-HR | HSX111S | H.ELE加高 | HSX111S/32MHZ/8PF/10PPM/10PPM@-2 |
X1C024000B81H-HV | HSX111S | H.ELE加高 | HSX111S/24MHZ/8PF/10PPM/30PPM@-4 |
X2C048000L71HH-CEHZ | HSX211S | H.ELE加高 | HSX211S/48MHZ/11.1PF/8PPM/14PPM/ |
X2R026000BZ1HAZ-DHPZ | HSX221SR | H.ELE加高 | HSX221SR/26MHZ/7PF/10PPM/-30~105 |
X1R038400B81HA-CEHPZ | HSX111SR | H.ELE加高 | HSX111SR/38.4MHZ/8PF/10PPM/-40~1 |
X2U026000B81HBZ-DHPZ | HSX211SR | H.ELE加高 | HSX211SR/26MHZ/8PF/10PPM/-40~105 |
X2R026000B91HZ-DEHPZ | HSX221SR | H.ELE加高 | HSX221SR/26MHZ/9PF/10PPM/-30~85C |
X2R019200BZ1H-CHZ | HSX221SR | H.ELE加高 | HSX221SR/19.2MHZ/7PF/10PPM/-30~8 |
X2U019200BZ1H-CEHQZ | HSX211SR | H.ELE加高 | HSX211SR/19.2MHZ/7PF/10PPM/-40~1 |
X2U038400B81H-EPQZ | HSX211SR | H.ELE加高 | HSX211SR/38.4MHZ/8PF/10PPM/-30~1 |
X1R052000B81HZ-DEHPZ | HSX111SR | H.ELE加高 | HSX111SR/52MHZ/8PF/10PPM/-40~105 |
X12A040000BZ1H-HZ | HSX1210A | H.ELE加高 | HSX1210A/40MHZ/6PF/10PPM/12PPM/- |
X12A032000B81H-HZ | HSX1210A | 进口晶振 | HSX1210A/32MHZ/8PF/10PPM/10PPM/- |
X3S012000BK1H | HSX321S | H.ELE加高 | SMD Crystal Resonators 12MHz ±10ppm SMD-3225_4P RoHS |
X3S025000BK1H | HSX321S | H.ELE加高 | SMD Crystal Resonators 25MHz ±10ppm SMD-3225_4P RoHS |
X3S038400B91H-HU | HSX321S | H.ELE加高 | SMD Crystal Resonators 38.4MHz ±10ppm SMD-3225_4P RoHS |
X2B012000DC1H-X | HSX221SA | H.ELE加高 | SMD Crystal Resonators 12MHz ±20ppm SMD-2520_4P RoHS |
X2B016000B91H-HU | HSX221SA | H.ELE加高 | SMD Crystal Resonators 16MHz ±10ppm SMD-2520_4P RoHS |
X3S037400B91H-Z | HSX321S | H.ELE加高 | SMD Crystal Resonators 37.4MHz ±10ppm SMD-3225_4P RoHS |
X3S024000B91HA-R | HSX321S | H.ELE加高 | SMD Crystal Resonators 24MHz ±10ppm SMD-3225_4P RoHS |
X3S024000BK1H | HSX321S | H.ELE加高 | SMD Crystal Resonators 24MHz ±10ppm SMD-3225_4P RoHS |
X2B027000BC1H-HU | HSX221SA | H.ELE加高 | SMD Crystal Resonators 27MHz ±10ppm SMD-2520_4P RoHS |
X3S024000BG1HA-Z | HSX321S | H.ELE加高 | SMD Crystal Resonators 24MHz ±10ppm SMD-3225_4P RoHS |
X3S040000BA1H-R | HSX321S | H.ELE加高 | SMD Crystal Resonators 40MHz ±10ppm SMD-3225_4P RoHS |
X3S024000B91H-DEPV | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD-3225_4P RoHS |
X3S037400BA1H-Z | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S019200BZ1H-CHZ | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD-3225_4P RoHS |
X2B032000BC1H-HZ | HSX221SA | H.ELE加高 | SMD Crystal Resonators SMD-2520_4P RoHS |
X3S013000BA1H-V | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S026000B71HA-R | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S027120DC1H-V | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S01431AFK1H | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD-3225-4P RoHS |
X3S026000BB1H-CHZ | HSX321S | H.ELE加高 | SMD Crystal Resonators 26MHz ±10ppm SMD-3225_4P RoHS |
X3S016384DI1H-W | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S040000BC1H-HZ | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD-3225_4P RoHS |
X3S040000MB1H-HPZ | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S024000BK1H-V | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD-3225_4P RoHS |
X3S027000BK1HA-Z | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3G012000DI1H-HX | HSX321G | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S013560BK1H-V | HSX321S | H.ELE加高 | SMD Crystal Resonators 13.56MHz ±10ppm SMD-3225_4P RoHS |
X3S016000B81H-DHU | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S012000BA1H-HU | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X2C048000L71HA-CEHZ | HSX211S-AU | H.ELE加高 | SMD Crystal Resonators 48MHz ±8ppm SMD-2016_4P RoHS |
X3S027000DK1H-V | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S012000BA1HA-X | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X2B024000BC1HA-V | HSX221SA | H.ELE加高 | SMD Crystal Resonators SMD_2520-4P RoHS |
X3S032000BC1HZ-NU | HSX321S | H.ELE加高 | SMD Crystal Resonators 32MHz ±10ppm SMD-3225_4P RoHS |
X3S025000FC1H-HV | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S016000DC1H-V | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S024000D81H-X | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD_3225-4P RoHS |
X3S040000BF1H-Z | HSX321S | H.ELE加高 | SMD Crystal Resonators 40MHz ±10ppm SMD-3225-4P RoHS |
X3S024000B91H-V | HSX321S | H.ELE加高 | SMD Crystal Resonators SMD-3225_4P RoHS |